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This paper examines the multigrid procedures applied to the iterative solution of spectral 
equations. Spectral multigrid methods are described for selfadjoint elliptic equations with 
either periodic or Dirichlet boundary conditions. These methods show a substantial 
improvement over the simplest iterative schemes. 

Two computational approaches which achieved substantial popularity during the 
past decade are spectral methods and multigrid techniques. The former have proven 
highly efficient for time-dependent smooth flows in simple geometries [l-3]. The 
latter have been remarkably successful for elliptic equations and some steady state 
calculations 14-71. The principal advantage of spectral methods lies in their ability to 
achieve accurate results with substantially fewer grid points than required by typical 
finite difference methods. Despite the fact that spectral methods are represented by 
full matrices, explicit time-stepping algorithms can be implemented nearly as 
efficiently for them as for finite difference methods on a comparable grid. Transform 
methods [8] are often the key to this efficiency. For implicit methods or for steady 
state equations, direct solution of the spectral equations is generally not practical. 
Iterative schemes for such equations are essential. Orszag [9 ] has described several 
attractive methods. 

This paper examines an alternative approach which employs multigrid concepts in 
the iterative solution of spectral equations. In particular, spectral multigrid methods 
are described for selfadjoint elliptic equations with either periodic or Dirichlet 
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boundary conditions. For realistic fluid calculations, the relevant boundary 
conditions are likely to be periodic in at least one (angular) coordinate and Dirichlet 
(or Neumann) in the remaining coordinates. Spectral methods may not always be 
effective for flows in strictly rectangular geometries, since corners generally introduce 
singularities into the solution. These singularities can seriously degrade the accuracy 
of a spectral method. If the boundary is smooth, then mapping techniques [9] can 
often be used to transform the problem into one with a combination of periodic and 
Dirichlet boundary conditions. Spectral multigrid methods in these geometries can be 
devised by combining the techniques presented separately here. 

PERIODIC PROBLEMS 

Fourier Spectral Approximations 

Several types of spectral approximations can be employed. The specific method 
used here is often termed collocation or pseudospectral approximation. In many 
cases, this method is easier to implement and is more efficient than the alternative 
Galerkin and tau approximations. A thorough discussion of all these methods can be 
found in [3]. 

For a periodic problem, spectral approximations should be based upon Fourier 
series. In the collocation approach, the fundamental representation of the solution 
remains in physical space. The Fourier coefficients are only employed as an inter- 
mediate result in the approximate evaluation of derivatives. Consider a function u(x) 
which is periodic over the interval [0, 2771. Use N evenly spaced collocation points 

xi = 2nj/N, j = 0, 1 ,..., N - 1, (1) 

and denote u(xj) by uj. The first step in the evaluation of du/dx is the computation of 
the approximate Fourier coefficients 2i, via 

N-l 

z$, = (l/v’%) x uJ eeiPxj, p = -N/2, -N/2 + l,..., N/2 - 1. (2) 
j=O 

Since the n(xj) are real, LN,* is real and LP = ti,* for 1 pi < N/2, where the * 
denotes complex conjugation. The derivative is then computed via 

N/2 I 

du/dx(x,) = (l/\/N) Y‘ 
,=-Y,Zil 

ipzi, eipxJ, j = 0, I,,.., N - 1. (3) 

Both sums can be evaluated in O(N In N) operations by the fast Fourier transform 
[lo]. This algorithm is most commonly employed with N chosen to be a power of 2. 

Note that the lower limit on the sum in Eq. (3) is not p = - N/2 but 
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p=-N/2+ 1. Th is change is equivalent to setting GPNlz = 0. The right-hand side of 
Eq. (3) is necessarily real. The neglected term 

is purely imaginary and cannot contribute to du/dx(xj). This neglected term 
represents the familiar two-point oscillation in u(x). (Finite difference schemes which 
use central differences for first derivatives also remove the two-point oscillation.) 

The spectral evaluation of derivatives has a convenient matrix representation. Let 
U denote the vector of the solution at the grid, or collocation, points, i.e., 

u = (&I 3 UI ,a.., U,& , ), (4) 

let C represent the discrete Fourier transform, i.e., 

cj,= (1/~)e-2”ilti-(N12))lN, j, 1 = 0, 1 ,..., N - 1, (5) 

and let D be the diagonal matrix which represents the first derivative in Fourier 
space, i.e., 

D, = io’ - N/2), for j= 1, 2 ,..., N- 1, 

= 0, for j= 0. (6) 

Note that C ~ ’ = C *, the Hermitian transpose of C. Then the matrix 

M=C-‘DC (7) 

represents (in physical space) the spectral evaluation of a first derivative. This matrix 
is given explicitly by 

Mj, = Gj-1, (8) 

where 

rGlj=o, if j = 0, kN, f2N ,..., 

= cos(1 - l/N) nj/(2 sin(nj/N)), otherwise. (9) 

A spectral approximation to the ordinary differential equation 

on [0, 2n] with periodic boundary conditions, and with a(x) and f(x) infinitely 
differentiable as well as periodic, satisfies the discrete equation 

LU=F, (11) 
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L = MAM, (12) 

(13) 

and 

F = (fo,f1 ,...,s,- 1). (14) 

Equation (11) may be inverted to yield 

U = (C-‘D-‘CA-‘C-‘D-t) F. (15) 

Although the matrix D is technically singular, this merely reflects the usual nonuni- 
queness of the solution of Eq. (10). All of the matrix multiplies required by the right- 
hand side of Eq. (15) may be implemented efficiently. There are three diagonal 
matrices and four Fourier transforms. Thus, the solution to Eq. (11) can be obtained 
directly in O(N In N) operations, even though the matrix L is full. 

Unfortunately, effkient direct solutions are not available in higher dimensions. 
Consider the self-adjoint elliptic equation 

(16) 

on the square [0, 2n] x [0, 27~1. Again impose periodic boundary conditions and 
assume that the functions a, b, and f are also periodic as well as infinitely differen- 
tiable. A spectral approximation to Eq. (16) will exhibit exponential convergence, i.e., 
the error will ultimately decrease faster than any finite inverse power of the number 
of collocation points. 

For simplicity, suppose that an N x N mesh is employed. Define the approximate 
solution 

uj[ = u(xj9 YO for j, I=O, l,..., N- 1. (17) 

Define F in a similar fashion. The discrete approximation to Eq. (16) is 

LU=F, (18) 

where the fourth-order tensor L is defined by 

L=(M@I)A(M@I)+(I@M)B(I@M), (19) 

with @ denoting a tensor product and I representing the identity matrix of order N. 
The fourth-order tensors A and B represent the contributions of the variable coef- 
ficients a(x, y) and b(x, v), respectively. 

The authors are unaware of any effkient method for solving Eq. (18) directly. The 
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iterative methods described in [9] are one possible solution scheme. A different sort 
of iterative method-one involving the use of multiple grids-is described below. 

Euler Iteration on a Single Grid 

The direct solution of the NZ x NZ system represented by Eq. (18) would require 
O(N4) storage locations and O(N6) operations. Many iterative schemes require only 
O(N’) storage locations and O(N2 In N) operations per step. Perhaps the simplest 
iterative scheme is the Euler method 

U+U-w(F-LU), (20) 

where o is a relaxation parameter. Aside from the coefficients a(cci, y,) and b(x,, y,), 
the only substantial storage required is for the residual (the term in parentheses in 
Eq. (20)], which is clearly O(N’). The tensor L is never explicitly required. The 
residual itself costs O(N2 In N) operations to compute. Jacobi’s method (see below) is 
also economical in storage and cost per step. Not all iterative schemes used to solve 
finite difference equations are practical for the spectral equations, however. 
Gauss-Seidel is an obvious example. The term LU can only be evaluated efficiently if 
it is done all at once. 

It is instructive to consider the application of the Euler iteration to the constant 
coefficient case a(x, v) = b(x, u) = 1. The tensor L simplifies to 

L=M*@I+I@M’. (21) 

The eigenvalues and eigenvectors of L are 

A,, = - (p’ + q2), (22) 
cj,cp, q) = e(2ni/W(pj+d), (23) 

where the eigenvalues and eigenvectors are labelled by p and q, which lie in the range 
p, q = -N/2, -N/2 + l,..., N/2 - 1. In Eq. (22), if either p or q = - N/2, then that 
term should be replaced by 0 on the right-hand side. A single iteration by Eq. (20) 
replaces the error component Qp, q) with (1 + WA,,) ((p, q). There are two eigen- 
vectors which are unaffected by the iteration. One of these-for 
p = q = O-represents the mean level of the solution. It must be specified for the 
partial differential equation to have a unique answer. The other term-for 
p=q=-N/2- represents the high-frequency component that is ignored by the 
discretization. This component should be filtered out of the right-hand side F. 

This scheme is convergent if 

UJ < -2/&-,,N,2-, = 4/(N- 2)2. 

The smallest spectral radius 

p=(N’-4N+2)/(N2-4N+6)r 1 -4/N’, 

(24) 

(25) 
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is obtained when 

w = 4/(N2 - 4N + 6). (26) 

According to the usual reasoning, Eq. (25) implies O(N’) iterations are required. This 
means a total of O(N4 In N) operations are required in order to solve Eq. (18) in this 
fashion. 

Euler Iteration Using Multiple Grids 

Multigrid methods have become a standard means of accelerating convergence for 
finite difference and finite element discretizations of elliptic equations. The basic 
processes are the relaxation scheme and the transfer of residuals and corrections 
between the various grids. In addition to specific choices of relaxation and inter- 
polation procedures, a multigrid algorithm must give rules governing the transfer 
between grids. A variety of control structures for this latter process have been 
employed. For examples of some of the control structures, see the flow charts in (5 1. 
The present discussion will focus on the relaxation and interpolation procedures, 
since they are less arbitrary than the control structure. Moreover, the description will 
be given for the spectral discretization of the one-dimensional problem (Eqs. (11) and 
(12)). This is done simply for notational convenience. The performance will be 
assessed, and numerical examples given, however, for the two-dimensional case. 

Define a series of grids (or levels) G,, for k = 2, 3,..., K covering the interval 
[O, 2711. Let G, consist of Nk uniformly spaced points, where N, = 2k. The solution to 
Eq. (11) is obtained by combining Euler iterations on level K with Euler iterations for 
related problems on the coarser levels k < K. Denote the relevant discrete problem at 
any level k by 

L,V,=F,. (27) 

On the finest level K, L, = L, F, = F, and the solution V, = U, the solution to 
Eq. (11). At any stage in the iterative solution process for Eq. (27), only an approx- 
imation vk to the exact answer V, is available. If this approximation is deemed 
adequate, then the approximation on the next-finer level k + 1 is corrected via 

‘k+l + ‘k+l +Pk+,vk’ (28) 

The matrix P, represents the coarse-to-fine transfer of corrections from level k - 1 to 
level k. On the other hand, if the approximation vk is deemed inadequate, either 
another relaxation is performed, via 

vk c vk - Wk(F, - L,v,), (29) 

or else control shifts to a problem on the next-coarser level k - 1. The relaxation 
parameter ok on level k is chosen to damp preferentially those error components 
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which are not represented on coarser grids. The right-hand side of the coarser grid 
problem is obtained from 

F k-I=wFk-hvJ (30) 

The matrix R, represents the fine-to-coarse residual transfer from level k to level 
k- 1. 

For the spectral multigrid method, the natural interpolation operators represent 
trigonometric rather than polynomial interpolation. For the one-dimensional case, 

R, = CL:, Ek-,Ck, (31) 

I’, = C,’ E;_, Ck-,, (32) 

where the N, x Nk+ i matrix 

E, = (OI4lO) (33) 

(with I, the identity matrix of order Nk), El is its transpose, and C, is the matrix 
given in Eq. (5) for N = Nk. The matrix E, represents the dropping of the high- 
frequency Fourier coefficients in the trigonometric interpolation from the fine grid to 
the coarse grid. Note that P, = R,. * The generalization to higher dimensions is 
straightforward. 

For the constant-coeffkient one-dimensional case, the finest grid relaxation 
operator 

L, = C,‘D*C,, (34) 

and it is natural to use 

Lk=CklD;Ck (35) 

for k < K. It is easy to show that 

L k-, = R,LkPk. (36) 

The description of the variable coefficient relaxation operator is more complicated 
and the details will be published elsewhere. The procedure used in the numerical 
experiments reported below amounts to performing the collocation operations in an 
alias-free fashion. 

For the two-dimensional Poisson equation discussed in the previous section, the 
level k relaxation parameter wk is chosen to maximize the smoothing of all the modes 
except those for which 1 ~1, 1 q/ < N,/4, 

ok = 2/((9/16) N: - 2N, + 2). (37) 

This choice produces a smoothing rate for the high-frequency modes of 

,uk = 1 - 2N:/(9N: - 32N, + 32): (38) 
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TABLE I 

Convergence Rates for Euler Iteration in Two Dimensions 

N 
Single grid 

spectral radius 
Multigrid 

smoothing rate 

4 0.3333 0.3333 
8 0.8947 0.6364 

16 0.9798 0.7193 
32 0.9956 0.75 IO 
64 0.9990 0.7649 
co 1 .oooo 0.7778 

after one relaxation, the amplitude of each high-frequency mode is at most ,uk times 
its previous amplitude. This smoothing rate is listed in Table I alongside the spectral 
radius for the single grid Euler method. The advantage of multiple gridding is 
apparent. For large Nk, pk = 7/9. Thus, according to the usual multigrid argument, 
the number of iterations needed to obtain a given reduction in the residual should be 
independent of the number of grid points on the finest grid. This assumes, of course, 
no untoward effects of the interpolation process. But the trigonometric interpolation 
procedure used here is ideally suited to minimize the spurious generation of high- 
frequency components at these stages. 

Alternatives to Euler Relaxation 

A straightforward improvement upon the simple relaxation scheme described in the 
preceding subsection is to make it nonstationary. This approach has been used for 
accelerating point-Jacobi iterations for finite difference multigrid algorithms (see 
[ 11 I). The nonstationary Euler iteration consists of using n relaxation parameters 
wk,l 3 cc)k,2 ,.-*, ILO~,~ in a cyclic fashion on each level k. These parameters are deter- 
mined from the solution of a standard minimax problem over the interval covered by 
the high-frequency eigenvalues. 

For the two-dimensional Poisson equation, this eigenvalue range is from -(N,/4)’ 
to -(N,/2 - l)2. The results are only changed slightly if the upper limit of this range 
is changed to -(Nk/2)2. Then the optimal parameters are given by 

c.o~,~ = (32/N;)/(7 coso’- l/2) n/n + 9) (39) 

and the total smoothing of the high frequencies after the full n relaxations is 
l/l T,(-9/7)l, where T,,(x) is the Chebyshev polynomial of degree n. Then the 
effective smoothing rate is 

Pk = VI T,(-9/7) I “n, (40) 

which is the average smoothing per single step in the cyclic relaxation. The values are 
given in Table II along with the corresponding effective smoothing rates for a finite 
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TABLE II 

Smoothing Rates for Euler Iteration on Poisson’s Equation 

Number of 
parameters 

Spectral 
smoothing rate 

Finite difference 
smoothing rate 

1 0.7778 0.6000 
2 0.6585 0.4685 
3 0.5995 0.4198 
4 0.5676 0.3964 
5 0.5485 0.3749 

difference multigrid method which also is relaxed with Euler iteration. The spectral 
smoothing rates are larger than the finite difference ones because the ratio of the 
largest high-frequency eigenvalue to the smallest high-frequency eigenvalue is 8 in the 
former case and only 4 in the latter. This ratio may be termed the multigrid condition 
number. The higher smoothing rate for the spectral method suggests that a larger 
number of distinct relaxation parameters should be used here than for the finite 
difference case. 

It should be kept in mind that this larger eigenvalue ratio for the spectral method 
occurs because this method represents the larger eigenvalues of the partial differential 
equation much better than finite difference methods. Indeed, it is just this property 
which is responsible for the exponential convergence rate of spectral methods as N is 
increased and for their low phase error in time-dependent calculations. 

Another obvious relaxation scheme is point-Jacobi. The actual implementation of 
this method requires that the diagonal elements of the matrix L be known explicitly. 
Consider the one-dimensional situation, where L is given by Eq. (12) for the general 
case. It would appear that the evaluation of the elements Ljj requires O(N’) 
operations. This would be impractical since the results of the previous section 
suggested that only O(N In N) operations are needed to get the solution itself. 

Nonetheless, Jacobi relaxation is worth considering since transform methods may 
be employed to compute the requisite diagonal elements in only O(N ln N) 
operations. It is clear from Eq. (9) that &Ij is odd in j. Thus, 

But this is a convolution sum and may be evaluated efficiently by the transform 
methods described in [8]. Therefore, even for nonlinear problems, Jacobi relaxation 
may be implemented efficiently. 

The spectral multigrid method was implemented for the two-dimensional problem 
(Eq. (16)) for which the coefficients are 

a(x, y) = b(x, y) = 1 + & ecos’x+Yv) 
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and the solution itself is 

u(x, y) = sin(n cos x + 7r/4) sin(lr cos J + n/4). (43) 

The Fourier coefficients of this function may be expressed in terms of Bessel 
functions. This function is used in [3, pp. 35-371 to illustrate exponential 
convergence. The term 7c/4 serves to make all the Fourier coefficients nonzero. The 
constant E in Eq. (42) measures the departure of the equation from the strictly 
Poisson form. 

A simple control structure was selected for the multigrid algorithm: start on the 
finest level; perform a single relaxation followed by a line-to-coarse residual transfer 
on each level in turn until the coarsest level k = 2; there iterate until convergence; 
then work back up to the finest level, using the coarse-to-fine transfer of corrections 
followed by a single relaxation on each intermediate level. This process is repeated 
until the desired accuracy is achieved. This algorithm requires more frequent inter- 
polation but is less arbitrary than many alternatives. Despite the necessity for 
employing the fast Fourier transform in the trigonometric interpolations, this portion 
of the computations takes less than 10% of the total computation time. 

The root mean square (or discrete I, norm) results of calculations for which the 
finest level K is 5 are shown in Tables III and IV. The nonstationary Euler iteration 

used three distinct parameters. The transfer between grids does not occur until all 
three relaxations have been performed. The residuals are listed in the tables after 
every three relaxations on the finest grid. The number in parentheses is the exponent 
of the residual. For comparison purposes, note that Euler iteration on a single grid 
exhibits a residual of about 10 after 1.5 relaxations. The multigrid results are a 
marked improvement. 

On a 32 x 32 grid, the true solution of Fourier collocation Eq. (18) has an RMS 
error of 5.08 (-10) compared with the exact solution of Eq. (43) for E = 0.0. The 
RMS error of the nonstationary iteration after 15 line-grid relaxations is 2.20(-7). 
To get the full accuracy out of a spectral method, it may be necessary to reduce the 
residual by many orders of magnitude. By contrast, a second-order finite difference 

TABLE III 

RMS Residuals for Fourier Spectral Multigrid 
Using Stationary Euler Iteration 

Relaxation 
number & = 0.0 E = 0.1 E =0.2 

3 2.92 (1) 3.23 (0) 3.72 (0) 
6 2.27 (-1) 2.49 (-1) 3.12 (-1) 
9 3.24 (-2) 3.52 (-2) 4.40 (-2) 

12 1.02 (-2) 1.11 (-2) 1.37 (-2) 
15 4.00 (-3) 4.37 (-3) 5.55 (-3) 
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TABLE IV 

RMS Residuals for Fourier Spectral Multigrid 
Using Nonstationary Euler Iteration 

Relaxation 
number E = 0.0 E = 0.1 e=0.2 

3 2.82 (1) 3.12 (1) 3.47 (1) 
6 2.42 (-1) 2.10 (-1) 2.56 (-1) 
9 6.35 (-3) 3.68 (-3) 5.57 (-3) 

12 4.56 (-4) 3.19 (-4) 6.30 (-4) 
15 8.30 (-5) 5.36 (-5) 1.17 (-5) 

approximation on a 32 x 32 grid gives an RMS error of 7.64(-2) for the E = 0.0 
problem. Even a fourth-order method gives only 5.04(-3). For this problem, at least, 
it seems worthwhile to accept the less advantageous smoothing rate of the spectral 
multigrid method (see Table II), since a far smaller grid can be used than for a finite 
difference method. 

DIRICHLET PROBLEMS 

Chebyshev Spectral Approximations 

For problems with Dirichlet (or Neumann) boundary conditions, spectral approx- 
imations should be based upon Chebyshev series. The standard interval is l-1, 11 
and the collocation points are 

xj = cos(27rj/N), j = 0, l)..., N. (44) 

The analog to Eq. (7) with Dirichlet boundary conditions may be written in the form 
of Eqs. (1 l)-( 14), where now 

cj, = (2/NCiC,) cos(7rjl/N), 

lTi = 2, 
= 1, 

Dj, = 21/cj, 

= 0, 

and 

cj = 2, 

= 1, 

j, I = 0, 1 ,..., N, (45) 

j=Oorj=N, 

1 <j<N, (46) 

I>j+ 1 andI=j+ 1 (mod2), 

otherwise, (47) 

j = 0, 

j> 1. (48) 
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Many details about Chebyshev collocation can be found in [ 31. The matrix M, which 
represents the Chebyshev approximation to a first derivative, is again given by 
Eq. (7), where now 

Mj, = C;.(Mj+ I+ Mj-l)/(C; sin(nj/N)) for 1 <j<N- 1, 

M,, = -M,, = (2N* + 1)/6, (49) 

M,I = -MN, = 2(-l)‘/( 1 - cos(~//N)) for 1 ,< I < N - 1, 

liaj=o, j = 0, +2N, k4N ,..., 

= (l/2)(-ly’+’ cot(nj/N), otherwise. (50) 

Once more M is a full matrix but the product MU can be evaluated in O(N In N) 
operations. 

Preconditioned Euler Iteration Using Multiple Grids 

The direct analog of the Euler iteration method described in the preceding section 
is not practical for the Dirichlet problem. The difficulty is that for the Chebyshev 
second derivative operator, the multigrid condition number grows as N*. In the one- 
dimensional case Gershgorin’s Theorem can be used to show that the largest eigen- 
value grows as N4 [3]. All but the several largest eigenvalues are good approx- 
imations to the eigenvalues of the continuous problem. Thus, the smallest high- 
frequency eigenvalue grows as N*. (Direct numerical computation of the eigenvalues 
supports these conclusions.) Since the ratio of these two eigenvalues (the multigrid 
condition number) is N*, the smoothing rate of a straightforward Chebyshev-Euler 
multigrid method is of the same order as the spectral radius of the Fourier-Euler 
iteration on a single grid (see Table I). The nonstationary Chebyshev-Euler multigrid 
method has the same problem. 

Clearly, preconditioning is essential for an effective Chebyshev spectral multigrid 
algorithm based on Euler iteration. Thus, in place of Eq. (20), the relaxation scheme 
is 

U +- U-wH-‘(F-LU), (51) 

where the preconditioning matrix is denoted by H. An effective preconditioning 
matrix has been devised by Orszag [9] for finding solutions iteratively on a single 
grid to Chebyshev spectral approximations. That preconditioning matrix, denoted 
here by S, is a full finite difference approximation to the spectral matrix L. Orszag 
noted that the conventional condition number of the matrix S - ‘L should be about 
2.4, regardless of N. 

The preconditioning matrix employed in the present spectral multigrid calculations 



SPECTRAL MULTIGRID METHODS 497 

is a cheaper but less precise version of S. Instead of using S itself, an approximate 
lower-triangular/upper-triangular decomposition of S is used as H, i.e., 

H=PP’, (52) 

where script letters are used to denote the lower-triangular (9) and upper-triangular 
(P) factors. This matrix H is cheaper to employ than S because H -’ can be found by 
simple forward- and back-substitutions, whereas finding S ’ amounts to computing 
the solution to a finite difference discretization of the problem. 

To determine H, one starts with S as a standard finite difference approximation to 
Eq. (16) on the nonuniform grid of the Chebyshev collocation points. The matrices Y 
and 5Y are determined by the row sum agreement factorization which enforces the 
following conditions: 

(1) 5P and P have nonzero elements only in those positions which correspond 
to the nonzero elements in the lower- and upper-triangular part of S itself. 

(2) Whenever Sj, # 0 and j # I, then Hj, = Sj,. (The off-diagonal elements of H 
whose locations correspond to the nonzero off-diagonal elements of S are set to those 
values.) 

(3) The row sums of H are the same as those of S. 

For further details on this sort of preconditioning, see 1121. 
The decreased accuracy of the matrix H is indicated in Table V, which lists the 

smallest and largest eigenvalues of the preconditioned matrix H-IL. In contrast to 
the matrix S’L, for which the largest eigenvalue is roughly 2.4, the largest eigen- 
value here shows a slow growth with N, evidently increasing as JN. Both matrices 
yield essentially the same value for the smallest eigenvalue. Moreover, the smallest 
high-frequency eigenvalue of H - ‘L stays roughly constant-at about 1.45-as N 
increases. Thus, the multigrid condition number of this preconditioned Euler method 
increases slowly with N. 

The eigenvalue results given above suggest that an Euler iteration scheme using the 
approximate 9% factorization form of preconditioning will have the convergence 
rates listed in Table VI. The advantage of using multiple grids here is not as great as 
in the periodic case. The basic problem is the slow growth of the multi-grid condition 
number with N. Clearly, better forms of preconditioning are needed. 

TABLE V 

Extreme Eigenvalues of the Preconditioned Matrices 

N S’L H ‘L 

4 1.000 1.757 1.037 1.781 
8 1.000 2.131 1.061 2.877 

16 1.000 2.305 1.043 4.241 
32 1.000 2.363 1.034 6.392 
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TABLE VI 

Convergence Rates for Euler Iteration in Two Dimensions 

N 

4 
8 

16 
32 

Single grid Multigrid 
spectral radius smoothing rate 

0.264 0.264 
0.462 0.330 
0.605 0.490 
0.725 0.630 

The interpolation for this multigrid scheme can be based upon the Chebyshev 
polynomial expansions of the solution. Expressions analogous to Eqs. (31)-(33) can 
be employed, where Eq. (45) is now used for the matrix C and the expression for the 
matrix E is altered accordingly. If the boundary conditions are homogeneous, then C 
can easily be manipulated into a selfadjoint form. 

Nonstationary Euler iteration will, of course, improve the multigrid smoothing 
rates. The use of four distinct parameters reduces the smoothing rates of the N = 16 
and N = 32 cases to 0.30 and 0.40, respectively. 

Point-Jacobi is a viable alternative here as well. The present form of the matrix 
(Eq. (49)) also permits the diagonal elements of variable coefficient (or nonlinear) 
problems to be computed efficiently by transform methods. Two convolution sums 
now appear in the analog of Eq. (41). The portion involving Mj-, can be evaluated in 
the usual manner after allowing for special treatment of the terms for which j = 0 and 
j = N. The portion involving Mj+, appears in transform space as the product of the 
transform of aj and the complex conjugate of the transform of the variable coef- 
ficient term a,. 

Numerical Example 

The test problem for the Chebyshev multigrid method has the coefficients 

a(x, y) = b(x, Y) = 1 + &(X2 + v’> (53) 

for the exact solution 

u(x, y) = sin(7r cos x) sin(n cos y). (54) 

Some of the results using the finest level K = 5 are listed in Table VII. On a single 
grid, the residual for the E = 0.0 case is 8.39 (-1) after 15 relaxations. The exact 
solution to the discrete equations for this case has an error that is essentially round- 
off error. There is relatively little content in the high-frequency component. The 
multigrid approach to this problem makes its biggest gains by using the coarser grids 
to damp out the low-frequency components. 

An example similar to Eq. (54) was examined in [ 131, where two schemes were 
given for solving the constant coefficient Chebyshev equations exactly. The results of 
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TABLE VII 

RMS Residuals for Chebyshev Spectral Multigrid 
Using Stationary Euler Iteration 

Relaxation 
number 6 = 0.0 E = 0.1 c=o.2 

3 1.25 (0) 1.29 (0) 1.32 (0) 
6 2.14 (-1) 1.89 (-1) 1.67 (-1) 
9 4.68 (-2) 3.81 (-2) 3.16 (-2) 

12 1.18 (-2) 9.14 (-3) 7.34 (-3) 
15 3.32 (-3) 2.47 (-3) 1.93 (-3) 

a recent note [ 141 suggest that greater accuracy can be achieved, especially on 
problems with singularities, by subdividing the original domain and patching the 
individual Chebyshev spectral solutions together along the internal boundaries. The 
spectral multigrid method can be applied to patched collocation approximations as 
well. Moreover, the multigrid approach would appear to present a noticeable 
improvement over the admittedly inefficient schemes used in [ 14 ]. 

CONCLUSION 

The spectral multigrid methods described here exhibited a substantial improvement 
over the simplest iterative schemes. It has not yet been checked whether this specific 
algorithm is more efticient than the best available iterative methods. There is still 
room for improvement, of course, in the spectral multigrid methods. This is especially 
true for the Chebyshev methods, for which better preconditioning procedures would 
help considerably. 

It is technically straightforward to extend this solution technique to two- 
dimensional incompressible Navier-Stokes equations, particularly in the vorticity- 
streamfunction formulation, since the problem addressed in this paper is represen- 
tative of the advection-diffusion equation. Present efforts are directed towards using 
the spectral multigrid method to compute the classical problem of flow past a circular 
cylinder. The appropriate method for this geometry combines a Fourier approx- 
imation in angle and a Chebyshev approximation in radius. 

APPENDIX: NOMENCLATURE 

A diagonal matrix of PDE coeffkients at collocation points 
a variable coefficient in PDE 
B diagonal matrix of PDE coefficients at collocation points 
b variable coefficient in PDE 

C matrix representing Fourier transform 
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Fj 
D 
E 
F 

f 
Gk 
H 
K 
k 
L 

LIP 
M 
R 
N 
n 
P 
R 
s 
T 
u 
% 
II 
Ii 
V 
” 

-6Y 
6j.l 

f 
r 
P 
w 
P 
P 

constants used in describing the discrete cosine transform 
matrix representing first derivative operator in transform space 
matrix describing trigonometric interpolation in transform space 
right-hand side terms of PDE at collocation points 
right-hand side term of PDE 
grid on level k 
preconditioning matrix 
finest level of the multiple grids 
any grid (or level) k of multiple grids 
matrix representing spectral approximation to PDE operator 
lower-triangular matrix 
matrix representing first derivative operator in physical space 
vector used for describing M 
number of collocation points (in one coordinate direction) 
number of distinct relaxation parameters 
matrix representing coarse-to-fine grid interpolation 
matrix representing line-to-coarse grid interpolation 
matrix representing finite difference approximation to PDE 
Chebyshev polynomial of degree n 
vector of solution at collocation points 
upper-triangular matrix 
solution to PDE 
Fourier transform of solution to PDE 
vector of corrections in multigrid scheme 
approximate solution to V 
physical space coordinates 
Keonecker delta function 
amplitude in variable coefficient term 
eigenvalue 
eigenvector 
spectral radius 
relaxation parameter 
smoothing rate 
average smoothing rate 
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